20c. Results of syntheses – Heterogeneity
Present results of all investigations of possible causes of heterogeneity among study results.
Essential elements
If investigations of possible causes of heterogeneity were conducted:
If subgroup analysis was conducted, report for each analysis the exact P value for a test for interaction as well as, within each subgroup, the summary estimates, their precision (such as standard error or 95% confidence/credible interval) and measures of heterogeneity. Results from subgroup analyses might usefully be presented graphically (see Fisher et al3).
If meta-regression was conducted, report for each analysis the exact P value for the regression coefficient and its precision.
If informal methods (that is, those that do not involve a formal statistical test) were used to investigate heterogeneity—which may arise particularly when the data are not amenable to meta-analysis—describe the results observed. For example, present a table that groups study results by dose or overall risk of bias and comment on any patterns observed.4
Additional elements
If subgroup analysis was conducted, consider presenting the estimate for the difference between subgroups and its precision.
If meta-regression was conducted, consider presenting a meta-regression scatterplot with the study effect estimates plotted against the potential effect modifier.1
Explanation
Presenting results from all investigations of possible causes of heterogeneity among study results is important for users of reviews and for future research. For users, understanding the factors that may, and equally, may not, explain variability in the effect estimates, may inform decision making. Similarly, presenting all results is important for designing future studies. For example, the results may help to generate hypotheses about potential modifying factors that can be tested in future studies, or help identify “active” intervention ingredients that might be combined and tested in a future randomised trial. Selective reporting of the results leads to an incomplete representation of the evidence that risks misdirecting decision making and future research.
Example
“Among the 4 trials that recruited critically ill patients who were and were not receiving invasive mechanical ventilation at randomization, the association between corticosteroids and lower mortality was less marked in patients receiving invasive mechanical ventilation (ratio of odds ratios (ORs), 4.34 [95% CI, 1.46-12.91]; P = 0.008 based on within-trial estimates combined across trials); however, only 401 patients (120 deaths) contributed to this comparison…All trials contributed data according to age group and sex. For the association between corticosteroids and mortality, the OR was 0.69 (95% CI, 0.51-0.93) among 880 patients older than 60 years, the OR was 0.67 (95% CI, 0.48-0.94) among 821 patients aged 60 years or younger (ratio of ORs, 1.02 [95% CI, 0.63-1.65], P = 0.94), the OR was 0.66 (95% CI, 0.51-0.84) among 1215 men, and the OR was 0.66 (95% CI, 0.43-0.99) among 488 women (ratio of ORs, 1.07 [95% CI, 0.58-1.98], P = 0.84).”5
Training
The UK EQUATOR Centre runs training on how to write using reporting guidelines.
Discuss this item
Visit this items’ discussion page to ask questions and give feedback.