27. Availability of data, code, and other materials

Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review

Essential elements

  • Report which of the following are publicly available: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.

  • If any of the above materials are publicly available, report where they can be found (such as provide a link to files deposited in a public repository).

  • If data, analytic code, or other materials will be made available upon request, provide the contact details of the author responsible for sharing the materials and describe the circumstances under which such materials will be shared.

Explanation

Sharing of data, analytic code, and other materials enables others to reuse the data, check the data for errors, attempt to reproduce the findings, and understand more about the analysis than may be provided by descriptions of methods.12 Support for sharing of data, analytic code, and other materials is growing, including from patients3 and journal editors, including BMJ and PLOS Medicine.4

Sharing of data, analytic code, and other materials relevant to a systematic review includes making various items publicly available, such as the template data collection forms; all data extracted from included studies; a file indicating necessary data conversions; the clean dataset(s) used for all analyses in a format ready for reuse (such as CSV file); metadata (such as complete descriptions of variable names, README files describing each file shared); analytic code used in software with a command-line interface or complete descriptions of the steps used in point-and-click software to run all analyses. Other materials might include more detailed information about the intervention delivered in the primary studies that are otherwise not available, such as a video of the specific cognitive behavioural therapy supplied by the study investigators to reviewers.5 Similarly, other material might include a list of all citations screened and any decisions about eligibility.

Because sharing of data, analytic code, and other materials is not yet universal in health and medical research,4 even interested authors may not know how to make their materials publicly available. Data, analytic code, and other materials can be uploaded to one of several publicly accessible repositories (such as Open Science Framework, Dryad, figshare). The Systematic Review Data Repository (https://srdr.ahrq.gov/) is another example of a platform for sharing materials specific to the systematic review community.6 All of these open repositories should be given consideration, particularly if the completed review is to be considered for publication in a paywalled journal. The Findable, Accessible, Interoperable, Reusable (FAIR) data principles are also a useful resource for authors to consult,7 as they provide guidance on the best way to share information.

There are some situations where authors might not be able to share review materials, such as when the review team are custodians rather than owners of individual participant data, or when there are legal or licensing restrictions. For example, records exported directly from bibliographic databases (such as Ovid MEDLINE) typically include copyrighted material; authors should read the licensing terms of the databases they search to see what they can share and to consider the copyright legislation of their countries.

Example

“All meta-analytic data and all codebooks and analysis scripts (for Mplus and R) are publicly available at the study’s associated page on the Open Science Framework (https://osf.io/r8a24/)...The precise sources (table, section, or paragraph) for each estimate are described in notes in the master data spreadsheet, available on the Open Science Framework page for this study (https://osf.io/r8a24/)”8

Training

The UK EQUATOR Centre runs training on how to write using reporting guidelines.

Discuss this item

Visit this items’ discussion page to ask questions and give feedback.

References

1.
Haddaway NR. Open synthesis: On the need for evidence synthesis to embrace open science. Environmental Evidence. 2018;7(1). doi:10.1186/s13750-018-0140-4
2.
Goldacre B, Morton CE, DeVito NJ. Why researchers should share their analytic code. BMJ. Published online November 2019:l6365. doi:10.1136/bmj.l6365
3.
Mello MM, Lieou V, Goodman SN. Clinical trial participants’ views of the risks and benefits of data sharing. New England Journal of Medicine. 2018;378(23):2202-2211. doi:10.1056/nejmsa1713258
4.
Naudet F, Sakarovitch C, Janiaud P, et al. Data sharing and reanalysis of randomized controlled trials in leading biomedical journals with a full data sharing policy: Survey of studies published inThe BMJandPLOS medicine. BMJ. Published online February 2018:k400. doi:10.1136/bmj.k400
5.
Hoffmann TC, Oxman AD, Ioannidis JP, et al. Enhancing the usability of systematic reviews by improving the consideration and description of interventions. BMJ. Published online July 2017:j2998. doi:10.1136/bmj.j2998
6.
Saldanha IJ, Smith BT, Ntzani E, Jap J, Balk EM, Lau J. The systematic review data repository (SRDR): Descriptive characteristics of publicly available data and opportunities for research. Systematic Reviews. 2019;8(1). doi:10.1186/s13643-019-1250-y
7.
Wilkinson MD, Dumontier M, Aalbersberg IjJ, et al. The FAIR guiding principles for scientific data management and stewardship. Scientific Data. 2016;3(1). doi:10.1038/sdata.2016.18
8.
Ritchie SJ, Tucker-Drob EM. How much does education improve intelligence? A meta-analysis. Psychological Science. 2018;29(8):1358-1369. doi:10.1177/0956797618774253

Citation

For attribution, please cite this work as:
Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 372:n160. doi:10.1136/bmj.n160

Reporting Guidelines are recommendations to help describe your work clearly

Your research will be used by people from different disciplines and backgrounds for decades to come. Reporting guidelines list the information you should describe so that everyone can understand, replicate, and synthesise your work.

Reporting guidelines do not prescribe how research should be designed or conducted. Rather, they help authors transparently describe what they did, why they did it, and what they found.

Reporting guidelines make writing research easier, and transparent research leads to better patient outcomes.

Easier writing

Following guidance makes writing easier and quicker.

Smoother publishing

Many journals require completed reporting checklists at submission.

Maximum impact

From nobel prizes to null results, articles have more impact when everyone can use them.

Who reads research?

You work will be read by different people, for different reasons, around the world, and for decades to come. Reporting guidelines help you consider all of your potential audiences. For example, your research may be read by researchers from different fields, by clinicians, patients, evidence synthesisers, peer reviewers, or editors. Your readers will need information to understand, to replicate, apply, appraise, synthesise, and use your work.

Cohort studies

A cohort study is an observational study in which a group of people with a particular exposure (e.g. a putative risk factor or protective factor) and a group of people without this exposure are followed over time. The outcomes of the people in the exposed group are compared to the outcomes of the people in the unexposed group to see if the exposure is associated with particular outcomes (e.g. getting cancer or length of life).

Source.

Case-control studies

A case-control study is a research method used in healthcare to investigate potential risk factors for a specific disease. It involves comparing individuals who have been diagnosed with the disease (cases) to those who have not (controls). By analysing the differences between the two groups, researchers can identify factors that may contribute to the development of the disease.

An example would be when researchers conducted a case-control study examining whether exposure to diesel exhaust particles increases the risk of respiratory disease in underground miners. Cases included miners diagnosed with respiratory disease, while controls were miners without respiratory disease. Participants' past occupational exposures to diesel exhaust particles were evaluated to compare exposure rates between cases and controls.

Source.

Cross-sectional studies

A cross-sectional study (also sometimes called a "cross-sectional survey") serves as an observational tool, where researchers capture data from a cohort of participants at a singular point. This approach provides a 'snapshot'— a brief glimpse into the characteristics or outcomes prevalent within a designated population at that precise point in time. The primary aim here is not to track changes or developments over an extended period but to assess and quantify the current situation regarding specific variables or conditions. Such a methodology is instrumental in identifying patterns or correlations among various factors within the population, providing a basis for further, more detailed investigation.

Source

Systematic reviews

A systematic review is a comprehensive approach designed to identify, evaluate, and synthesise all available evidence relevant to a specific research question. In essence, it collects all possible studies related to a given topic and design, and reviews and analyses their results.

The process involves a highly sensitive search strategy to ensure that as much pertinent information as possible is gathered. Once collected, this evidence is often critically appraised to assess its quality and relevance, ensuring that conclusions drawn are based on robust data. Systematic reviews often involve defining inclusion and exclusion criteria, which help to focus the analysis on the most relevant studies, ultimately synthesising the findings into a coherent narrative or statistical synthesis. Some systematic reviews will include a meta-analysis.

Source

Systematic review protocols

TODO

Meta analyses of Observational Studies

TODO

Randomised Trials

A randomised controlled trial (RCT) is a trial in which participants are randomly assigned to one of two or more groups: the experimental group or groups receive the intervention or interventions being tested; the comparison group (control group) receive usual care or no treatment or a placebo. The groups are then followed up to see if there are any differences between the results. This helps in assessing the effectiveness of the intervention.

Source

Randomised Trial Protocols

TODO

Qualitative research

Research that aims to gather and analyse non-numerical (descriptive) data in order to gain an understanding of individuals' social reality, including understanding their attitudes, beliefs, and motivation. This type of research typically involves in-depth interviews, focus groups, or field observations in order to collect data that is rich in detail and context. Qualitative research is often used to explore complex phenomena or to gain insight into people's experiences and perspectives on a particular topic. It is particularly useful when researchers want to understand the meaning that people attach to their experiences or when they want to uncover the underlying reasons for people's behavior. Qualitative methods include ethnography, grounded theory, discourse analysis, and interpretative phenomenological analysis.

Source

Case Reports

TODO

Diagnostic Test Accuracy Studies

Diagnostic accuracy studies focus on estimating the ability of the test(s) to correctly identify subjects with a predefined target condition, or the condition of interest (sensitivity) as well as to clearly identify those without the condition (specificity).

Prediction Models

Prediction model research is used to test the accurarcy of a model or test in estimating an outcome value or risk. Most models estimate the probability of the presence of a particular health condition (diagnostic) or whether a particular outcome will occur in the future (prognostic). Prediction models are used to support clinical decision making, such as whether to refer patients for further testing, monitor disease deterioration or treatment effects, or initiate treatment or lifestyle changes. Examples of well known prediction models include EuroSCORE II for cardiac surgery, the Gail model for breast cancer, the Framingham risk score for cardiovascular disease, IMPACT for traumatic brain injury, and FRAX for osteoporotic and hip fractures.

Source

Animal Research

TODO

Quality Improvement in Healthcare

Quality improvement research is about finding out how to improve and make changes in the most effective way. It is about systematically and rigourously exploring "what works" to improve quality in healthcare and the best ways to measure and disseminate this to ensure positive change. Most quality improvement effectiveness research is conducted in hospital settings, is focused on multiple quality improvement interventions, and uses process measures as outcomes. There is a great deal of variation in the research designs used to examine quality improvement effectiveness.

Source

Economic Evaluations in Healthcare

TODO

Meta Analyses

A meta-analysis is a statistical technique that amalgamates data from multiple studies to yield a single estimate of the effect size. This approach enhances precision and offers a more comprehensive understanding by integrating quantitative findings. Central to a meta-analysis is the evaluation of heterogeneity, which examines variations in study outcomes to ensure that differences in populations, interventions, or methodologies do not skew results. Techniques such as meta-regression or subgroup analysis are frequently employed to explore how various factors might influence the outcomes. This method is particularly effective when aiming to quantify the effect size, odds ratio, or risk ratio, providing a clearer numerical estimate that can significantly inform clinical or policy decisions.

How Meta-analyses and Systematic Reviews Work Together

Systematic reviews and meta-analyses function together, each complementing the other to provide a more robust understanding of research evidence. A systematic review meticulously gathers and evaluates all pertinent studies, establishing a solid foundation of qualitative and quantitative data. Within this framework, if the collected data exhibit sufficient homogeneity, a meta-analysis can be performed. This statistical synthesis allows for the integration of quantitative results from individual studies, producing a unified estimate of effect size. Techniques such as meta-regression or subgroup analysis may further refine these findings, elucidating how different variables impact the overall outcome. By combining these methodologies, researchers can achieve both a comprehensive narrative synthesis and a precise quantitative measure, enhancing the reliability and applicability of their conclusions. This integrated approach ensures that the findings are not only well-rounded but also statistically robust, providing greater confidence in the evidence base.

Why Don't All Systematic Reviews Use a Meta-Analysis?

Systematic reviews do not always have meta-analyses, due to variations in the data. For a meta-analysis to be viable, the data from different studies must be sufficiently similar, or homogeneous, in terms of design, population, and interventions. When the data shows significant heterogeneity, meaning there are considerable differences among the studies, combining them could lead to skewed or misleading conclusions. Furthermore, the quality of the included studies is critical; if the studies are of low methodological quality, merging their results could obscure true effects rather than explain them.

Protocol

A plan or set of steps that defines how something will be done. Before carrying out a research study, for example, the research protocol sets out what question is to be answered and how information will be collected and analysed.

Source

Systematic_review

A review that uses explicit, systematic methods to collate and synthesize findings of studies that address a clearly formulated question.

Source

Statistical synthesis

The combination of quantitative results of two or more studies. This encompasses meta-analysis of effect estimates (described below) and other methods, such as combining P values, calculating the range and distribution of observed effects, and vote counting based on the direction of effect (see McKenzie and Brennan for a description of each method)

Meta-analysis of effect estimates

A statistical technique used to synthesize results when study effect estimates and their variances are available, yielding a quantitative summary of results.

Source

Outcome

An event or measurement collected for participants in a study (such as quality of life, mortality).

Result

The combination of a point estimate (such as a mean difference, risk ratio or proportion) and a measure of its precision (such as a confidence/credible interval) for a particular outcome.

Reports

Documents (paper or electronic) supplying information about a particular study. A report could be a journal article, preprint, conference abstract, study register entry, clinical study report, dissertation, unpublished manuscript, government report, or any other document providing relevant information.

Record

The title or abstract (or both) of a report indexed in a database or website (such as a title or abstract for an article indexed in Medline). Records that refer to the same report (such as the same journal article) are “duplicates”; however, records that refer to reports that are merely similar (such as a similar abstract submitted to two different conferences) should be considered unique.

Study

An investigation, such as a clinical trial, that includes a defined group of participants and one or more interventions and outcomes. A “study” might have multiple reports. For example, reports could include the protocol, statistical analysis plan, baseline characteristics, results for the primary outcome, results for harms, results for secondary outcomes, and results for additional mediator and moderator analyses.