4a. Randomisation Use

What to write

State whether randomisation was used to allocate experimental units to control and treatment groups.

If done, provide the method used to generate the randomisation sequence.

Explanation

Using appropriate randomisation methods during the allocation to groups ensures that each experimental unit has an equal probability of receiving a particular treatment and provides balanced numbers in each treatment group. Selecting an animal ‘at random’ (i.e., haphazardly or arbitrarily) from a cage is not statistically random, as the process involves human judgement. It can introduce bias that influences the results, as a researcher may (consciously or subconsciously) make judgements in allocating an animal to a particular group, or because of unknown and uncontrolled differences in the experimental conditions or animals in different groups. Using a validated method of randomisation helps minimise selection bias and reduce systematic differences in the characteristics of animals allocated to different groups13. Inferential statistics based on nonrandomised group allocation are not valid4,5. Thus, the use of randomisation is a prerequisite for any experiment designed to test a hypothesis. Examples of appropriate randomisation methods include online random number generators (e.g., https://www.graphpad.com/quickcalcs/randomize1/) or a function like Rand() in spreadsheet software such as Excel, Google Sheets, or LibreOffice. The EDA has a dedicated feature for randomisation and allocation concealment6.

Systematic reviews have shown that animal experiments that do not report randomisation or other bias-reducing measures such as blinding are more likely to report exaggerated effects that meet conventional measures of statistical significance79. It is especially important to use randomisation in situations in which it is not possible to blind all or parts of the experiment, but even with randomisation, researcher bias can pervert the allocation. This can be avoided by using allocation concealment (see Item 5. Blinding). In studies in which sample sizes are small, simple randomisation may result in unbalanced groups; here, randomisation strategies to balance groups such as randomising in matched pairs1012 and blocking are encouraged13. Reporting the precise method used to allocate animals or experimental units to groups enables readers to assess the reliability of the results and identify potential limitations.

Report the type of randomisation used (simple, stratified, randomised complete blocks, etc.; see Section 3), the method used to generate the randomisation sequence (e.g., computer-generated randomisation sequence, with details of the algorithm or programme used), and what was randomised (e.g., treatment to experimental unit, order of treatment for each animal). If this varies between experiments, report this information specifically for each experiment. If randomisation was not the method used to allocate experimental units to groups, state this explicitly and explain how the groups being compared were formed.

Considerations for the randomisation strategy

Simple randomisation

All animals/samples are simultaneously randomised to the treatment groups without considering any other variable. This strategy is rarely appropriate, as it cannot ensure that comparison groups are balanced for other variables that might influence the result of an experiment.

Randomisation within blocks

Blocking is a method of controlling natural variation among experimental units. This splits up the experiment into smaller subexperiments (blocks), and treatments are randomised to experimental units within each block5,13,14. This takes into account nuisance variables that could potentially bias the results (e.g., cage location, day or week of procedure).

Stratified randomisation uses the same principle as randomisation within blocks, only the strata tend to be traits of the animal that are likely to be associated with the response (e.g., weight class or tumour size class). This can lead to differences in the practical implementation of stratified randomisation as compared with block randomisation (e.g., there may not be equal numbers of experimental units in each weight class).

Other randomisation strategies

Minimisation is an alternative strategy to allocate animals/samples to treatment group to balance variables that might influence the result of an experiment. With minimisation, the treatment allocated to the next animal/sample depends on the characteristics of those animals/samples already assigned. The aim is that each allocation should minimise the imbalance across multiple factors15. This approach works well for a continuous nuisance variable such as body weight or starting tumour volume.

Examples of nuisance variables that can be accounted for in the randomisation strategy

  • Time or day of the experiment
  • Litter, cage, or fish tank
  • Investigator or surgeon—different level of experience in the people administering the treatments, performing the surgeries, or assessing the results may result in varying stress levels in the animals or duration of anaesthesia
  • Equipment (e.g., PCR machine, spectrophotometer)—calibration may vary
  • Measurement of a study parameter (e.g., initial tumour volume)
  • Animal characteristics (e.g., sex, age bracket, weight bracket)
  • Location—exposure to light, ventilation, and disturbances may vary in cages located at different height or on different racks, which may affect important physiological processes

Implication for the analysis

If blocking factors are used in the randomisation, they should also be included in the analysis. Nuisance variables increase variability in the sample, which reduces statistical power. Including a nuisance variable as a blocking factor in the analysis accounts for that variability and can increase the power, thus increasing the ability to detect a real effect with fewer experimental units. However, blocking uses up degrees of freedom and thus reduces the power if the nuisance variable does not have a substantial impact on variability.

Examples

‘Fifty 12-week-old male Sprague-Dawley rats, weighing 320–360g, were obtained from Guangdong Medical Laboratory Animal Center (Guangzhou, China) and randomly divided into two groups (25 rats/group): the intact group and the castration group. Random numbers were generated using the standard = RAND() function in Microsoft Excel’16.

‘Animals were randomized after surviving the initial I/R, using a computer based random order generator’17.

‘At each institute, phenotyping data from both sexes is collected at regular intervals on age-matched wildtype mice of equivalent genetic backgrounds. Cohorts of at least seven homozygote mice of each sex per pipeline were generated…. The random allocation of mice to experimental group (wildtype versus knockout) was driven by Mendelian Inheritance’18.

Training

The UK EQUATOR Centre runs training on how to write using reporting guidelines.

Discuss this item

Visit this items’ discussion page to ask questions and give feedback.

References

1.
Schulz KF. Empirical evidence of bias: Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273(5):408. doi:10.1001/jama.1995.03520290060030
2.
Schulz KF, Grimes DA. Allocation concealment in randomised trials: Defending against deciphering. The Lancet. 2002;359(9306):614-618. doi:10.1016/s0140-6736(02)07750-4
3.
Chalmers TC, Celano P, Sacks HS, Smith H. Bias in treatment assignment in controlled clinical trials. New England Journal of Medicine. 1983;309(22):1358-1361. doi:10.1056/nejm198312013092204
4.
Greenberg BG. Why randomize? Biometrics. 1951;7(4):309. doi:10.2307/3001653
5.
Altman DG, Bland JM. Statistics notes: Treatment allocation in controlled trials: Why randomise? BMJ. 1999;318(7192):1209-1209. doi:10.1136/bmj.318.7192.1209
6.
Percie du Sert N, Bamsey I, Bate ST, et al. The experimental design assistant. PLOS Biology. 2017;15(9):e2003779. doi:10.1371/journal.pbio.2003779
7.
Hirst JA, Howick J, Aronson JK, et al. The need for randomization in animal trials: An overview of systematic reviews. Thombs B, ed. PLoS ONE. 2014;9(6):e98856. doi:10.1371/journal.pone.0098856
8.
Vesterinen HM, Sena ES, ffrench-Constant C, Williams A, Chandran S, Macleod MR. Improving the translational hit of experimental treatments in multiple sclerosis. Multiple Sclerosis Journal. 2010;16(9):1044-1055. doi:10.1177/1352458510379612
9.
Bebarta V, Luyten D, Heard K. Emergency medicine animal research: Does use of randomization and blinding affect the results? Academic Emergency Medicine. 2003;10(6):684-687. doi:10.1111/j.1553-2712.2003.tb00056.x
10.
Taves DR. Minimization: A new method of assigning patients to treatment and control groups. Clinical Pharmacology & Therapeutics. 1974;15(5):443-453. doi:10.1002/cpt1974155443
11.
Saint-Mont U. Randomization does not help much, comparability does. Tu YK, ed. PLOS ONE. 2015;10(7):e0132102. doi:10.1371/journal.pone.0132102
12.
Laajala TD, Jumppanen M, Huhtaniemi R, et al. Optimized design and analysis of preclinical intervention studies in vivo. Scientific Reports. 2016;6(1). doi:10.1038/srep30723
13.
Bate ST, Clark RA. The Design and Statistical Analysis of Animal Experiments. Cambridge University Press; 2014. doi:10.1017/cbo9781139344319
14.
Kang M, Ragan BG, Park JH. Issues in outcomes research: An overview of randomization techniques for clinical trials. Journal of Athletic Training. 2008;43(2):215-221. doi:10.4085/1062-6050-43.2.215
15.
Altman DG, Bland JM. Treatment allocation by minimisation. BMJ. 2005;330(7495):843. doi:10.1136/bmj.330.7495.843
16.
Zhao S, Kang R, Deng T, et al. Comparison of two cannulation methods for assessment of intracavernosal pressure in a rat model. Torrens C, ed. PLOS ONE. 2018;13(2):e0193543. doi:10.1371/journal.pone.0193543
17.
Jansen of Lorkeers SJ, Gho JMIH, Koudstaal S, et al. Xenotransplantation of human cardiomyocyte progenitor cells does not improve cardiac function in a porcine model of chronic ischemic heart failure. Results from a randomized, blinded, placebo controlled trial. Tang Y, ed. PLOS ONE. 2015;10(12):e0143953. doi:10.1371/journal.pone.0143953
18.
Karp NA, Mason J, Beaudet AL, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications. 2017;8(1). doi:10.1038/ncomms15475

Citation

For attribution, please cite this work as:
Sert NP du, Hurst V, Ahluwalia A, et al. The ARRIVE reporting guideline for writing animal research articles. The EQUATOR Network guideline dissemination platform. doi:10.1234/equator/1010101

Reporting Guidelines are recommendations to help describe your work clearly

Your research will be used by people from different disciplines and backgrounds for decades to come. Reporting guidelines list the information you should describe so that everyone can understand, replicate, and synthesise your work.

Reporting guidelines do not prescribe how research should be designed or conducted. Rather, they help authors transparently describe what they did, why they did it, and what they found.

Reporting guidelines make writing research easier, and transparent research leads to better patient outcomes.

Easier writing

Following guidance makes writing easier and quicker.

Smoother publishing

Many journals require completed reporting checklists at submission.

Maximum impact

From nobel prizes to null results, articles have more impact when everyone can use them.

Who reads research?

You work will be read by different people, for different reasons, around the world, and for decades to come. Reporting guidelines help you consider all of your potential audiences. For example, your research may be read by researchers from different fields, by clinicians, patients, evidence synthesisers, peer reviewers, or editors. Your readers will need information to understand, to replicate, apply, appraise, synthesise, and use your work.

Cohort studies

A cohort study is an observational study in which a group of people with a particular exposure (e.g. a putative risk factor or protective factor) and a group of people without this exposure are followed over time. The outcomes of the people in the exposed group are compared to the outcomes of the people in the unexposed group to see if the exposure is associated with particular outcomes (e.g. getting cancer or length of life).

Source.

Case-control studies

A case-control study is a research method used in healthcare to investigate potential risk factors for a specific disease. It involves comparing individuals who have been diagnosed with the disease (cases) to those who have not (controls). By analysing the differences between the two groups, researchers can identify factors that may contribute to the development of the disease.

An example would be when researchers conducted a case-control study examining whether exposure to diesel exhaust particles increases the risk of respiratory disease in underground miners. Cases included miners diagnosed with respiratory disease, while controls were miners without respiratory disease. Participants' past occupational exposures to diesel exhaust particles were evaluated to compare exposure rates between cases and controls.

Source.

Cross-sectional studies

A cross-sectional study (also sometimes called a "cross-sectional survey") serves as an observational tool, where researchers capture data from a cohort of participants at a singular point. This approach provides a 'snapshot'— a brief glimpse into the characteristics or outcomes prevalent within a designated population at that precise point in time. The primary aim here is not to track changes or developments over an extended period but to assess and quantify the current situation regarding specific variables or conditions. Such a methodology is instrumental in identifying patterns or correlations among various factors within the population, providing a basis for further, more detailed investigation.

Source

Systematic reviews

A systematic review is a comprehensive approach designed to identify, evaluate, and synthesise all available evidence relevant to a specific research question. In essence, it collects all possible studies related to a given topic and design, and reviews and analyses their results.

The process involves a highly sensitive search strategy to ensure that as much pertinent information as possible is gathered. Once collected, this evidence is often critically appraised to assess its quality and relevance, ensuring that conclusions drawn are based on robust data. Systematic reviews often involve defining inclusion and exclusion criteria, which help to focus the analysis on the most relevant studies, ultimately synthesising the findings into a coherent narrative or statistical synthesis. Some systematic reviews will include a meta-analysis.

Source

Systematic review protocols

TODO

Meta analyses of Observational Studies

TODO

Randomised Trials

A randomised controlled trial (RCT) is a trial in which participants are randomly assigned to one of two or more groups: the experimental group or groups receive the intervention or interventions being tested; the comparison group (control group) receive usual care or no treatment or a placebo. The groups are then followed up to see if there are any differences between the results. This helps in assessing the effectiveness of the intervention.

Source

Randomised Trial Protocols

TODO

Qualitative research

Research that aims to gather and analyse non-numerical (descriptive) data in order to gain an understanding of individuals' social reality, including understanding their attitudes, beliefs, and motivation. This type of research typically involves in-depth interviews, focus groups, or field observations in order to collect data that is rich in detail and context. Qualitative research is often used to explore complex phenomena or to gain insight into people's experiences and perspectives on a particular topic. It is particularly useful when researchers want to understand the meaning that people attach to their experiences or when they want to uncover the underlying reasons for people's behavior. Qualitative methods include ethnography, grounded theory, discourse analysis, and interpretative phenomenological analysis.

Source

Case Reports

TODO

Diagnostic Test Accuracy Studies

Diagnostic accuracy studies focus on estimating the ability of the test(s) to correctly identify subjects with a predefined target condition, or the condition of interest (sensitivity) as well as to clearly identify those without the condition (specificity).

Prediction Models

Prediction model research is used to test the accurarcy of a model or test in estimating an outcome value or risk. Most models estimate the probability of the presence of a particular health condition (diagnostic) or whether a particular outcome will occur in the future (prognostic). Prediction models are used to support clinical decision making, such as whether to refer patients for further testing, monitor disease deterioration or treatment effects, or initiate treatment or lifestyle changes. Examples of well known prediction models include EuroSCORE II for cardiac surgery, the Gail model for breast cancer, the Framingham risk score for cardiovascular disease, IMPACT for traumatic brain injury, and FRAX for osteoporotic and hip fractures.

Source

Animal Research

TODO

Quality Improvement in Healthcare

Quality improvement research is about finding out how to improve and make changes in the most effective way. It is about systematically and rigourously exploring "what works" to improve quality in healthcare and the best ways to measure and disseminate this to ensure positive change. Most quality improvement effectiveness research is conducted in hospital settings, is focused on multiple quality improvement interventions, and uses process measures as outcomes. There is a great deal of variation in the research designs used to examine quality improvement effectiveness.

Source

Economic Evaluations in Healthcare

TODO

Meta Analyses

A meta-analysis is a statistical technique that amalgamates data from multiple studies to yield a single estimate of the effect size. This approach enhances precision and offers a more comprehensive understanding by integrating quantitative findings. Central to a meta-analysis is the evaluation of heterogeneity, which examines variations in study outcomes to ensure that differences in populations, interventions, or methodologies do not skew results. Techniques such as meta-regression or subgroup analysis are frequently employed to explore how various factors might influence the outcomes. This method is particularly effective when aiming to quantify the effect size, odds ratio, or risk ratio, providing a clearer numerical estimate that can significantly inform clinical or policy decisions.

How Meta-analyses and Systematic Reviews Work Together

Systematic reviews and meta-analyses function together, each complementing the other to provide a more robust understanding of research evidence. A systematic review meticulously gathers and evaluates all pertinent studies, establishing a solid foundation of qualitative and quantitative data. Within this framework, if the collected data exhibit sufficient homogeneity, a meta-analysis can be performed. This statistical synthesis allows for the integration of quantitative results from individual studies, producing a unified estimate of effect size. Techniques such as meta-regression or subgroup analysis may further refine these findings, elucidating how different variables impact the overall outcome. By combining these methodologies, researchers can achieve both a comprehensive narrative synthesis and a precise quantitative measure, enhancing the reliability and applicability of their conclusions. This integrated approach ensures that the findings are not only well-rounded but also statistically robust, providing greater confidence in the evidence base.

Why Don't All Systematic Reviews Use a Meta-Analysis?

Systematic reviews do not always have meta-analyses, due to variations in the data. For a meta-analysis to be viable, the data from different studies must be sufficiently similar, or homogeneous, in terms of design, population, and interventions. When the data shows significant heterogeneity, meaning there are considerable differences among the studies, combining them could lead to skewed or misleading conclusions. Furthermore, the quality of the included studies is critical; if the studies are of low methodological quality, merging their results could obscure true effects rather than explain them.

Protocol

A plan or set of steps that defines how something will be done. Before carrying out a research study, for example, the research protocol sets out what question is to be answered and how information will be collected and analysed.

Source

Animal research

When ARRIVE refers to animal research it is referring to in vivo animal research. This is the use of non-human animals, sometimes known as model organisms, in experiments that seek to control the variables that affect the behavior or biological system under study. This approach can be contrasted with field studies in which animals are observed in their natural environments or habitats. Animal research varies on a continuum from pure research, focusing on developing fundamental knowledge of an organism, to applied research, which may focus on answering some questions of great practical importance, such as finding a cure for a disease. Source" The ARRIVE guidelines apply to all areas of bioscience research involving living animals. That includes mammalian species as well as model organisms such as Drosophila or Caenorhabditis elegans. Each item is equally relevant to manuscripts centred around a single animal study and broader-scope manuscripts describing in vivo observations along with other types of experiments. The exact type of detail to report, however, might vary between species and experimental setup; this is acknowledged in the guidance provided for each item. Source

Bias

The over- or underestimation of the true effect of an intervention. Bias is caused by inadequacies in the design, conduct, or analysis of an experiment, resulting in the introduction of error.\n\nSource

Descriptive and inferential statistics

Descriptive statistics are used to summarise the data. They generally include a measure of central tendency (e.g., mean or median) and a measure of spread (e.g., standard deviation or range). Inferential statistics are used to make generalisations about the population from which the samples are drawn. Hypothesis tests such as ANOVA, Mann-Whitney, or t tests are examples of inferential statistics.\n\nSource

Effect size

Quantitative measure of differences between groups, or strength of relationships between variables.\n\nSource

Experimental unit

Biological entity subjected to an intervention independently of all other units, such that it is possible to assign any two experimental units to different treatment groups. Sometimes known as unit of randomisation.\n\nSource

External validity

Extent to which the results of a given study enable application or generalisation to other studies, study conditions, animal strains/species, or humans.\n\nSource

False negative

Statistically nonsignificant result obtained when the alternative hypothesis (H~1~) is true. In statistics, it is known as the type II error.\n\nSource

False positive

Statistically significant result obtained when the null hypothesis (H~0~) is true. In statistics, it is known as the type I error.\n\nSource

Independent variable

Variable that either the researcher manipulates (treatment, condition, time) or is a property of the sample (sex) or a technical feature (batch, cage, sample collection) that can potentially affect the outcome measure. Independent variables can be scientifically interesting, or nuisance variables. Also known as predictor variable.\n\nSource

Internal validity

Extent to which the results of a given study can be attributed to the effects of the experimental intervention, rather than some other, unknown factor(s) (e.g., inadequacies in the design, conduct, or analysis of the study introducing bias).\n\nSource

Nuisance variable

Variables that are not of primary interest but should be considered in the experimental design or the analysis because they may affect the outcome measure and add variability. They become confounders if, in addition, they are correlated with an independent variable of interest, as this introduces bias. Nuisance variables should be considered in the design of the experiment (to prevent them from becoming confounders) and in the analysis (to account for the variability and sometimes to reduce bias). For example, nuisance variables can be used as blocking factors or covariates.\n\nSource

Null and alternative hypotheses

The null hypothesis (H~0~) is that there is no effect, such as a difference between groups or an association between variables. The alternative hypothesis (H~1~) postulates that an effect exists.\n\nSource

Outcome measure

Any variable recorded during a study to assess the effects of a treatment or experimental intervention. Also known as dependent variable, response variable.\n\nSource

Power

For a predefined, biologically meaningful effect size, the probability that the statistical test will detect the effect if it exists (i.e., the null hypothesis is rejected correctly).\n\nSource

Sample size

Number of experimental units per group, also referred to as n.\n\nSource